
FireSim: FPGA-Accelerated
Cycle-Exact Scale-Out System
Simulation in the Public Cloud
Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt,
Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikoli�c,
Randy Howard Katz, Jonathan Bachrach, and Krste Asanovi�c
University of California,Berkeley

Abstract—In this article,we present FireSim, an open-source simulation platform that enables

fast cycle-exactmicroarchitectural simulation of large scale-out clusters by combining

FPGA-accelerated simulation of silicon-provenRTL designswith scalable, distributed network

simulation, running on a public-cloud host platform. By introducing automation and harnessing

cloud FPGAs, FireSim provides the usability and productivity of software full-system

simulatorswith the high performance and accuracy of FPGA-accelerated simulation,while

adding the unprecedented ability to scale to globally cycle-accurate simulations of thousands

of networked nodes. To demonstrate FireSim’s scalability, we automatically generate and

deploy a target cluster simulation of 1024 3.2-GHz quad-core server nodes, eachwith 16GBof

DRAM, interconnected by a 200Gb/s networkwith low latency,which simulates at a 6.6-MHz

processor clock rate (<500� slowdownover real time). In aggregate, this simulation

harnessesmillions of dollars of FPGAs—at a cost of only hundreds of dollars per

simulation-hour to users.

& THE DEMAND FOR ever more powerful ware-

house-scale computers (WSCs) continues to

grow, to support new compute-intensive appli-

cations deployed on billions of edge devices

as well as conventional computing workloads

migrating to the cloud. While the first few

generations of WSCs were built with standard

servers, hardware and application trends are

pushing datacenter architects toward building

warehouse-scale machines that are increasingly

specialized and tightly integrated.1 These hard-

ware trends include the end of general-purpose

processor performance scaling, the continued

scaling of network performance, new memory

technologies, and new disaggregated datacenter

architectures. To support modern web-scale

services, application and systems framework

Digital Object Identifier 10.1109/MM.2019.2910175

Date of publication 11 April 2019; date of current version 8

May 2019.

Top Picks

56
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

developers expect the ability to deploy fine-

grained tasks, where task latencies are measured

inmicroseconds.

These trends push the boundaries of hard-

ware-software co-design at scale. Architects can

no longer simply simulate individual nodes and

leave the issues of scale to post-silicon measure-

ment. Additionally, the introduction of custom

silicon in the cloud to augment general-purpose

processing means that architects must model

emerging hardware, not only well-understood

processor microarchitectures. Hardware-soft-

ware codesign studies targeting next-generation

WSCs are hampered by a lack of a scalable and

performant simula-

tion environment.

Modifying micro-

architectural soft-

ware simulators

to model scale-out

systems2;3 is

hampered by the

low simulation

speeds (5–100

KIPS) of the under-

lying single-server

software simulator.

Fast custom-built

simulation hardware has been proposed,4 but is

difficult to modify and involves considerable cap-

ital expense, which limits access for most aca-

demic and industrial researchers.

To address these limitations, we present

FireSim (https://fires.im, https://github.com/

firesim/firesim),5 a fast, open-source, cycle-

exact FPGA-accelerated simulation framework

that can simulate large clusters, including

high bandwidth, low-latency networks, on

a public-cloud host platform.

PRODUCTIVE FPGA-ACCELERATED
SIMULATION WITH CLOUD-HOSTED
FPGAs

Architects experience many challenges

when building and using FPGA-accelerated

simulation platforms. FPGA platforms are

unwieldy, especially compared to commodity

servers used by software simulators. Tradi-

tional FPGA platforms are constrained by high

prices, individual platform quirks that make

reproducibility difficult, the need to provision

for maximum utilization at time of initial pur-

chase, and long build times. Even when FPGA

pricing is insignificant to a project, building a

custom rack of large FPGAs requires significant

operations experience and makes it extremely

difficult to share and reproduce research

prototypes.

Several cloud providers have recently inte-

grated FPGAs into their cloud services, including

Amazon, Microsoft, Huawei, and Alibaba. Ama-

zon makes FPGAs available as part of its EC2 F1

public cloud offering, allowing developers to

directly design FPGA-based applications that

run in the cloud. Using an FPGA-enabled public

cloud platform addresses many of the traditional

issues with FPGA-based hardware simulation by

providing elasticity, scalability, and reduction in

capital expenditure.

Because of these benefits, Amazon EC2 F1

forms a natural platform on which to build the

scalable FireSim environment. Amazon’s EC2 F1

offering provides three new EC2 instance types,

f1.2xlarge, f1.4xlarge, and f1.16xlarge, which

consist of a powerful host instance attached by

PCIe to 1, 2, or 8 Xilinx Virtex UltraScale+

FPGAs. Each FPGA contains 64 GB of DRAM

onboard across four channels, making it an

ideal platform for prototyping servers. FireSim

can automatically provision and scale across

large numbers of these host instances to run

simulations and build FPGA images.

FireSim
FireSim5 models a target system containing a

collection of server blades connected by some

form of network. The target server blades are

modeled using FAME-1 models6 automatically

derived from the RTL of the server SoCs and

mapped onto FPGA instances, while the target

network is modeled with high performance,

cycle-by-cycle C++ switch models running on

host server instances. These two target compo-

nents are interconnected by a high-performance

simulation token transport that models target

link characteristics. Figure 1 shows the target

topology and target-to-host mapping for a 64-

node simulation with eight top-of-rack (ToR)

switches and one root switch, which we use as

an example throughout this section.

We present FireSim

(https://fires.im, https://

github.com/ firesim/

firesim), a fast, open-

source, cycle- exact

FPGA-accelerated sim-

ulation framework that

can simulate large

clusters, including high

bandwidth, low-latency

networks, on a public-

cloud host platform.

May/June 2019 57

https://fires.im
https://github.com/firesim/firesim
https://github.com/firesim/firesim
https://fires.im
https://github.com/ firesim/firesim
https://github.com/ firesim/firesim
https://github.com/ firesim/firesim

Server Blade Simulation
Target Server Design. FireSim compute serv-

ers are derived from the Rocket Chip SoC genera-

tor,7 which is an SoC generation library written

in Chisel. Rocket Chip can produce Verilog RTL

for a complete processor system, including the

RISC-V Rocket CPU, L1 and L2 caches, custom

accelerators, and I/O peripherals. Concretely,

the server blades we model in this article all con-

sist of 1 to 4 RISC-V Rocket Cores modeled at 3.2-

GHz, 16-KiB private L1 I/D Caches, a 256-KiB

shared L2, 16 GiB of DDR3, a 200-Gb/s Ethernet

NIC, optional RoCC accelerators, and a disk con-

troller. When we refer to a particular frequency

f for Rocket Chip, for example, 3.2 GHz, this

implies that all models that require a notion of

target time in the simulation (e.g., the network)

assume that 1 cycle is equivalent to 1/f seconds.

The “FAME-1 Rocket Chip” box in Figure 1

provides a sample block diagram of a Rocket

Chip server node. To produce a complete

server blade, we implement two new hardware

components as tapeout-ready Chisel RTL: a

block device controller to interface with a disk

model (e.g., to boot custom Linux distributions

with large root filesystems) and an on-die

Ethernet network interface controller (NIC) with

a corresponding RISC-V Linux driver,

described in detail in our full paper.5

Cycle-Exact Server Simulations

from RTL. We use the FAME-16

transforms provided by the MIDAS/

Strober frameworks8;9 to translate

the server designs written in Chisel

into RTL with decoupled I/O interfa-

ces for use in simulation. Each target

cycle, the transformed RTL on the

FPGA expects a token on each input

interface to supply input data for that

target cycle and produces a token on

each output interface to feed to the

rest of the simulated environment.

If any input of the SoC does not have

an input token for that target cycle,

simulation stalls until a token arrives.

This allows for timing-accurate

modeling of I/O attached to custom

RTL on the FPGA. To provide a cycle-

accurate DDR3 DRAM model for our

target servers, we use a synthesizable

DRAM timing model, FASED,8 backed by the host

FPGA’s on-board DRAM. Other I/O interfaces

(UART, Block Device, NIC) communicate with a

software driver (“simulation controller” in

Figure 1) on the host CPU core, which imple-

ments both timing and functional request han-

dling (e.g., fetching disk blocks). Since in this

article we are primarily interested in scaling to

large clusters and network modeling, we focus on

the implementation of the network token-

transport mechanism used to globally coordinate

simulation target time between the FAME-1-

transformed server nodes.

Improving Scalability and Utilization. In

addition to the previously described configura-

tion, FireSim includes an additional “supernode”

configuration, which simulates multiple com-

plete target designs on each FPGA to provide

improved utilization and scalability, restricted

only by FPGA resources. In our 1024-node simu-

lation (see the “Thousand-Node Datacenter

Simulation” section), we pack four quad-core

server blade simulations onto each FPGA,

allowing us to model a 32-node rack on each

f1.16xlarge instance.

Figure 1. Target view (top) and mapping (bottom) of a 64-node simulation to

EC2 F1 in FireSim.

Top Picks

58 IEEE Micro

Network Simulation
Target Switch Modeling. Switches are mod-

eled in software using a high-performance C++

switching model that processes network flits

cycle-by-cycle. The switch models have a param-

eterizable number of ports, each of which inter-

act with either a port on another switch or a

simulated server NIC on the FPGA. Port band-

width, link latency, amount of buffering, and

switching latency are all parameterized and run-

time-configurable.

The simulated switches implement store-and-

forward switching of Ethernet frames. At ingress

into the switch, individual simulation tokens

that contain valid data are buffered into full

packets, timestamped based on the arrival cycle

of their last token, and placed into input packet

queues. This step is parallelized using host

OpenMP threads, with one thread per port.

The timestamps are also incremented by a con-

figurable minimum switching latency to model

the minimum port-to-port latency of datacenter

switches. These timestamps are later used to

determine when a packet can be released to an

output buffer. A global switching step then takes

all input packets available during the switching

round, pushes them through a priority queue

that sorts them on timestamp, and then drains

the priority queue into the appropriate output

port buffers based on a static MAC address

table (since datacenter topologies are relatively

fixed). In this step, packets are duplicated as

necessary to handle broadcasts. Finally, in-paral-

lel and per-port, output ports “release” packets

to be sent on the link in simulation token form,

based on the switch’s notion of simulation time,

the packet timestamp, and the amount of avail-

able space in the output token buffer. In essence,

packets can be released when their release time-

stamp is less than or equal to global simulation

time. Since the output token buffers are of a fixed

size during each iteration, congestion is auto-

matically modeled by packets not being able to

be released due to full output buffers. Dropping

due to buffer sizing and congestion is also mod-

eled by placing an upper bound on the allowable

delay between a packet’s release timestamp and

the global time, after which a packet is dropped.

The switching algorithm described above and

assumption of Ethernet as the link layer is not

fundamental to FireSim—a user can easily plug-

in their own switching algorithm or their own

link-layer protocol parsing code in C++ to model

new switch designs.

High-Performance Token Transport. From

the target’s view, endpoints on the network

(either NICs or ports on switches) should com-

municate with one another through a link of a

particular latency and bandwidth. On a simu-

lated link, the fundamental unit of data trans-

ferred is a token that represents one target

cycle’s worth of data. Each target cycle, every

NIC expects one input token and produces one

output token in response. Each port on every

switch also behaves in the same way. For a link

with link latency of N cycles, N tokens are

always “in-flight” on the link at any given time.

That is, if a particular network endpoint issues a

token at target cycle M, the token arrives at the

other side of the link for consumption at target

cycleM þN .

To simulate the 200-Gb/s links we use

throughout this article, the width of the data

field in each token is set to 64 bits, since we

assume that our simulated processor frequency

is 3.2 GHz. In a distributed simulation as in Fire-

Sim, different host nodes are decoupled and can

be executing different target cycles at the same

time, but the exchange of these tokens ensures

that each server simulation computes each tar-

get cycle deterministically, since all NICs and

switch ports are connected to the same network

and do not advance unless they have input

tokens to consume.

In a datacenter topology, there are two types

of links to model: links between a NIC and a

switch port and links between two ports on dif-

ferent switches. Since we model switches in soft-

ware and NICs (and servers) on FPGAs, these

two types of links map to two different types of

token transport. Transport between NICs and

switch models requires two hops: a token must

first cross the PCIe interface to an individual

node’s simulation driver, then be sent to a local

switch model through shared memory or a

remote switch model over a socket. To improve

performance without causing deadlock, tokens

are moved across host transports in batches of

up to the number of cycles of link latency.

May/June 2019 59

Deploying/Mapping Simulations

to EC2 F1. At this point, we have out-

lined each component necessary to

build a large-scale cluster simulation

in FireSim. However, without automa-

tion, the task of stitching together all

of these components in a reliable

and reproducible way is daunting.

To overcome this challenge, the

FireSim infrastructure includes a simu-

lation manager that automatically

builds and deploys simulations given a

programmatically defined datacenter

topology. That is, a user can write a

configuration in a few lines of Python

that describes a particular datacenter

topology and server types for each server blade.

The FireSim cluster manager takes this configu-

ration and automatically runs the desired RTL

through the FPGA build flow and generates the

high-performance switch models and simulation

controllers with the appropriate network token

transports (shared memory, socket, PCIe trans-

port). In particular, based on the given topology,

simulated servers are automatically assigned

MAC and IP addresses and the MAC switching

tables in the switch models are automatically

populated for each switch in the simulation.

Once all component builds are complete, the

manager flashes FPGAs on each F1 instance with

the desired server configurations, deploys simu-

lations and switch models as described by the

user, and finally boots Linux (or other software)

on the simulated nodes. At the root switch, a

special port can be added to the network that

allows for direct ingress into the simulated data-

center network over SSH. That is, a user can

directly ssh into the simulated system from the

host machine and treat it as if it were a real clus-

ter to deploy programs and collect results. Alter-

natively, a second layer of the cluster manager

allows users to describe jobs that automatically

run on the simulated cluster nodes and automati-

cally collect result files and host/target-level

measurements for analysis outside of the simula-

tion. For example, the open release of FireSim

includes reusable workload descriptions used

by the manager to automatically run various ver-

sions of SPECint, boot other Linux distributions

such as Fedora, or reproduce the experiments

described later in this article (http://docs.fires.

im/en/latest/Advanced-Usage/Workloads/ISCA-

2018-Experiments.html), among others.

REPRODUCING MEMCACHED QoS
PHENOMENA FROM DEPLOYED
COMMODITY CLUSTERS IN FireSim

As an end-to-end validation of FireSim

running a realistic datacenter workload, we

run the memcached key-value store and use

the mutilate memcached load-generator from

Leverich and Kozyrakis10 to benchmark our sim-

ulated system. While much simulation work has

focused on reproducing well-known phenomena

like the long-latency tail, we go further to vali-

date a finer-grained phenomenon: thread imbal-

ance in memcached servers when memcached

uses more threads than the number of cores in

the system. Reproducing this result involves

interaction between the core microarchitecture,

operating system, and network. Under thread

imbalance, a sharp increase in tail latency has

been shown, while median latency is relatively

unchanged.10 To replicate this result, we simu-

late an eight-node cluster in FireSim intercon-

nected by a 200-Gb/s, 2-ms latency network,

where each simulated server has four cores.

We provision one server in the simulation as a

memcached host. We run the mutilate load gen-

erator on the remaining seven simulated blades

to generate load on the memcached server.

On the serving node, we configure memcached

to run with either four or five threads and report

Figure 2. Reproducing the effect of thread imbalance on tail

latency in memcached.

Top Picks

60 IEEE Micro

http://docs.fires.im/en/latest/Advanced-Usage/Workloads/ISCA-2018-Experiments.html
http://docs.fires.im/en/latest/Advanced-Usage/Workloads/ISCA-2018-Experiments.html
http://docs.fires.im/en/latest/Advanced-Usage/Workloads/ISCA-2018-Experiments.html

median and tail (95th-percentile) latencies based

on achieved queries per second. Figure 2 shows

the results of this experiment. As expected from

the literature,10 we observe thread imbalance

when running with five threads—the tail latency

is significantly worsened by the presence of the

extra thread, while median latency is essentially

unaffected. Our full paper5 describes several

other interesting phenomena shown in Figure 2.

SIMULATION PERFORMANCE

Performance versus Target Scale and Link

Latency

To show the overhead of token-based syn-

chronization of all simulated nodes in clusters of

varying size interconnected by a simulated 2-ms,

200-Gb/s network, we run a benchmark that

boots Linux to userspace, then immediately

powers down the nodes in the cluster and reports

simulation rate. Despite the lack of network traf-

fic on the target, the network model must still

exchange tokens on each link for each cycle to

maintain global cycle accuracy. This benchmark

shows the overhead of distributing simulations,

first between FPGAs on one instance, and then

between FPGAs in different instances. Figure 3

shows the results of this benchmark, both for

“standard” and “supernode” FPGA configura-

tions. Our full paper5 also runs a similar bench-

mark varying link-latency rather than simulation

scale to demonstrate that FireSim performs well

even with links of varying latency (from 2.25 MHz

at 50-ns link-latency to 50 MHz at 10-ms link

latency).

Thousand-Node Datacenter Simulation

To demonstrate the scale achievable with

FireSim, we run a simulation that models 1024-�
3.2-GHz quad-core nodes, with 32 ToR switches,

four aggregation switches, and one root switch,

all interconnected by a 2-ms, 200-Gb/s network

and arranged in a tree topology, at a simulation

rate of 6.6 MHz. This design represents a more

realistic target design point than the example

design used in the “FireSim” section, since we

make use of FireSim’s “supernode” feature to

pack four simulated nodes per FPGA, giving a

total of 32 simulated nodes attached to each

ToR switch. Figure 4 shows this topology in

detail. Each ToR switch has 32 downlinks to

nodes and one uplink to an aggregation switch.

Each aggregation switch has eight downlinks,

each to one ToR switch and one uplink to the

root switch. Finally, the root switch has four

downlinks to the four aggregation switches in

the target topology. This topology is specified to

the FireSim simulation manager with around ten

lines of configuration code. More complicated

topologies, such as fat-tree, can similarly be

described in the manager configuration. Com-

pared to existing software simulators, this

instantiation of FireSim simulates an order of

magnitude more nodes, with several orders of

magnitude improved performance.

To map this simulation to EC2, we run 32

f1.16xlarge instances, which host ToR switch

models and simulated server blades, and five

m4.16xlarge instances to serve as aggregation

and root-switch model hosts. The cost of this

simulation can be calculated for two EC2 pricing

models: spot instances (bidding on unused

Figure 3. Simulation rate versus the number of simulated target

nodes.

Figure 4. Topology of 1024-node datacenter simulation.

May/June 2019 61

capacity) and on-demand (guaranteed instan-

ces). To calculate the spot price of this simula-

tion, we use the longest stable prices in recent

history, ignoring downward and upward spikes.

This results in a total cost of � $100 per simula-

tion hour. Using on-demand instances, which

have fixed instance prices, this simulation costs

� $440 per simulation hour. Using publicly listed

retail prices of the FPGAs on EC2 (� $50 000

each), this simulation harnesses � $12.8 million

worth of FPGAs. We expect that users will use

cluster-scale experiments to prototype systems,

with datacenter-scale experiments to analyze

behavior at-scale once a system is already stable

at cluster scale.

RELATED WORK
In this abbreviated article, we cover a limited

set of related work. Our full paper5 discusses

related work in detail.

Software Simulators

One approach to simulating WSCs is to scale-

out existing cycle-accurate full-system software

simulators. For example, dist-gem53 is a dis-

tributed version of the popular architectural

simulator gem5. Software-based simulators are

extremely flexible at the expense of perfor-

mance—being several orders of magnitude

slower than FPGA-accelerated simulation plat-

forms. Software models of processors are also

notoriously difficult to validate and calibrate

against a real design,11 and do not directly pro-

vide reliable power and area numbers. By utiliz-

ing FPGAs in a cloud service and directly

deriving simulations from silicon-proven RTL,

FireSim matches many of the traditional flexibil-

ity advantages of software simulators, while

maintaining cycle-exactness and high simulation

performance.

Hardware-Accelerated Simulators

Several proprietary tools exist for hardware-

accelerated system simulation, such as Cadence

Palladium, Mentor Veloce, and Synopsys Zebu.

These systems are generally prohibitively expen-

sive (�millions of dollars) and thus only used by

industrial design teams for single SoC projects.

Several prior projects used FPGAs to acceler-

ate simulation of computer systems. The RAMP

collaboration12 pushed toward fast, productive

FPGA-based evaluation for multicore systems,

and one of the RAMP simulators, DIABLO4 is the

most similar simulator to FireSim. Although DIA-

BLO also uses FPGAs to simulate large scale-out

systems, there are several significant differences

between DIABLO and FireSim:

Automatically transformed RTL versus

Abstract Models. In DIABLO, servers are mod-

eled using handwritten abstract RTL models.

Authoring abstract RTL models is considerably

more difficult than developing an actual design

in RTL, and abstract RTL cannot be run through

an ASIC flow to gain realistic power and area

numbers. FireSim’s simulated servers are built

by directly applying FAME-1 transforms to tape-

out-ready RTL to yield a simulator that has the

exact cycle-by-cycle bit-by-bit behavior of the

user-written RTL. Simulated switches in DIABLO

are also abstract RTL models. In FireSim, users

write abstract switch models in C++, making

them considerably easier to modify.

Specialized versus Commodity Host

Platform. DIABLO used a custom-built FPGA

platform that cost � $100000 at publication

time, excluding operation and maintenance

costs. This cost and platform-dependency makes

it difficult for other researchers to use DIABLO

and reproduce results. In contrast, the entire

FireSim codebase is open-source with substan-

tial documentation and automation, which

allows any user to easily deploy simulations on

EC2 without the high cost of purchasing large

numbers of FPGAs.

DISCUSSION AND FUTURE WORK

Productive and Reproducible FPGA-

Accelerated Simulation for Non-WSC Targets

The large scale of FireSim experiments

required us to build a simulation management

framework to enable reliable and reproducible

experimentation with thousands of nodes via

automation. This capability is also useful in

improving the productivity of FPGA-accelerated

simulation for non-WSC targets, for example,

Top Picks

62 IEEE Micro

running workloads like SPECint on single-node

systems. Harnessing FireSim’s ability to distrib-

ute jobs to many parallel single-node simula-

tions, users can run the entire SPECint17

benchmark suite on Rocket Chip-like systems

with full reference inputs, and obtain cycle-exact

results in roughly one day. In the future, we plan

to also reuse the FireSim network simulation

transport to support partitioning larger chip

designs across many FPGAs.

Open-Sourcing and Adoption

FireSim is BSD-licensed open-source (https://

github.com/firesim/firesim) and comes with 100+

pages of documentation (https://docs.fires.im).

FireSim has a growing user community across

industry (as a pre-silicon validation tool) and aca-

demia (with several

user publications in

ISCA, MICRO, and

workshops). In addi-

tion to research

usage, FireSim is

used in Berkeley’s

undergraduate com-

puter architecture

course, allowing

students to directly

work with real

implementations of

fundamental architectural concepts. We plan to

release these course materials to enable instruc-

tors to integrate FireSim into their curricula.

New Target Designs and New Simulator

Features

Because FireSim automatically transforms

RTL designs into FPGA simulators, supporting

new user designs is straightforward. In addition

to the RISC-V Rocket in-order core used in this

article, FireSim now also supports the Berkeley

Out-of-Order Machine, a superscalar OoO RISC-V

implementation and Hwacha, a vector accelera-

tor. Verilog designs have also been simulated

in FireSim, including the NVIDIA Deep Learning

Accelerator (NVDLA) and PicoRV32, a Verilog

RISC-V design. FireSim also contains new debug-

ging tools, including automatic logic analyzer

insertion and commit log tracing, among others,

which allow more introspection into designs

running on the FPGA. We aim to continue

improving FireSim’s introspection and automa-

tion capabilities to provide the flexibility and

ease-of-use of software simulators with the high

performance and accuracy of FPGA-accelerated

simulation.

CONCLUSION
The open-source FireSim simulation platform

represents a new approach to warehouse-scale

architectural research, simultaneously supporting

an unprecedented combination of fidelity (cycle-

exact microarchitectural models derived from syn-

thesizable RTL), target scale (4096 processor cores

connected by network switches), flexibility (modifi-

able to include arbitrary RTL and/or abstract mod-

els), reproducibility, target software support, and

performance (less than 500� slowdown over real

time), while using a public FPGA-cloud platform to

remove upfront costs and provide large cluster

simulations on-demand.

ACKNOWLEDGEMENTS
This work was supported by DARPA Award

Number HR0011-12-2-0016, ARPA-E Award Num-

ber DE-AR0000849, RISE Lab Sponsor Amazon

Web Services, ADEPT Lab industrial sponsor

Intel, and ADEPT Lab affiliates Google, Huawei,

Siemens, SK Hynix, and Seagate. Any opinions,

findings, conclusions, or recommendations in

this article are solely those of the authors and

do not necessarily reflect the position or the

policy of the sponsors.

& REFERENCES

1. L. A. Barroso, U. H€olzle, and P. Ranganathan,

“The datacenter as a computer: Designing warehouse-

scale machines, third edition,” Synthesis Lectures

Comput. Archit., vol. 39, no. 3, pp. i–189, 2018.

[Online]. Available: https://doi.org/10.2200/

S00874ED3V01Y201809CAC046

2. S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and

B. Grot, “Scale-out NUMA,” in Proc. 19th Int. Conf.

Archit. Support Program. Lang. Operating Syst., 2014,

pp. 3–18.

3. A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D.

Kim, and N. S. Kim, “dist-gem5: Distributed simulation of

computer clusters,” in Proc. IEEE Int. Symp. Perform.

Anal. Syst. Softw., Apr. 2017, pp. 153–162.

We aim to continue

improving FireSim’s

introspection and

automation capabilities

to provide the flexibility

and ease-of-use of

software simulators

with the high perfor-

mance and accuracy

of FPGA-accelerated

simulation.

May/June 2019 63

https://github.com/firesim/firesim
https://github.com/firesim/firesim
https://docs.fires.im
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046

4. Z. Tan, Z. Qian, X. Chen, K. Asanovi�c, and

D. Patterson, “DIABLO: A warehouse-scale computer

network simulator using FPGAs,” in Proc. 20th Int.

Conf. Archit. Support Program. Lang. Operating Syst.,

2015, pp. 207–221.

5. S. Karandikar et al., “FireSim: FPGA-accelerated

cycle-exact scale-out system simulation in the public

cloud,” in Proc. 45th Annu. Int. Symp. Comput. Archit.,

2018, pp. 29–42. [Online]. Available: https://doi.org/

10.1109/ISCA.2018.00014

6. Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovi�c,

and D. Patterson, “A case for FAME: FPGA

architecture model execution,” in Proc. 37th Annu. Int.

Symp. Comput. Archit., 2010, pp. 290–301.

7. K. Asanovi�c et al., “The rocket chip generator,” Electr.

Eng. Comput. Sci. Dept., Univ. California, Berkeley,

CA, USA, Tech. Rep. UCB/EECS-2016-17, Apr. 2016.

8. D. Biancolin et al., “FASED: FPGA-accelerated

simulation and evaluation of DRAM,” in Proc. ACM/

SIGDA Int. Symp. Field-Programmable Gate Arrays,

2019, pp. 330–339. [Online]. Available: https://doi.

acm.org/10.1145/3289602.3293894

9. D. Kim et al., “Strober: Fast and accurate sample-

based energy simulation for arbit accurate sample-

based energy simulation for arbit,” in Proc. 43rd Int.

Symp. Comput. Archit., 2016, pp. 128–139.

10. J. Leverich and C. Kozyrakis, “Reconciling high server

utilization and sub-millisecond quality-of-service,” in

Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 4:1–4:14.

11. A. Gutierrez et al., “Sources of error in full-system

simulation,” in Proc. IEEE Int. Symp. Perform. Anal.

Syst. Softw., 2014, pp. 13–22.

12. J. Wawrzynek et al., “RAMP: Research accelerator for

multiple processors,” IEEE Micro, vol. 27, no. 2,

pp. 46–57, Mar. 2007.

Sagar Karandikar is currently a PhD student

in the Department of Electrical Engineering

and Computer Sciences, University of California,

Berkeley. His research focuses on exploring hard-

ware-software co-design in warehouse-scale

machines. He has a BS and an MS in electrical engi-

neering and computer sciences from the University

of California, Berkeley. He is a member of the the

Association for Computing Machinery (ACM) and the

IEEE. Contact him at sagark@eecs.berkeley.edu.

Howard Mao is currently a PhD student at the

University of California, Berkeley. He is a member of

the ADEPT lab and is interested in designing

microarchitectures for datacenter systems. Contact

him at zhemao@eecs.berkeley.edu.

Donggyu Kim is currently a PhD student at

the University of California, Berkeley. He has an MS

in computer science from UC Berkeley, and previ-

ously studied at Pohang University of Science and

Technology. Contact him at dgkim@berkeley.edu.

David Biancolin is currently a PhD student in the

Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley. He has a

BASc in engineering science from the University of

Toronto. Contact him at biancolin@berkeley.edu.

Alon Amid is currently a PhD student in the

Electrical Engineering and Computer Sciences

Department, University of California, Berkeley. His

current research focus includes parallel and distrib-

uted computing, energy-efficient processors and

architectures, and hardware-software co-design. He

has a BSc in electrical engineering from Technion—

Israel Institute of Technology. Contact him at alona-

mid@eecs.berkeley.edu.

Dayeol Lee is currently a PhD student in the

Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley. He is

interested in hardware/system-level security as well

as warehouse-scale computer systems. He has a BS

and an MS in computer science and engineering

from Pohang University of Science and Technology.

Contact him at dayeol@berkeley.edu.

Nathan Pemberton is currently a PhD student in

the Department of Electrical Engineering and

Computer Sciences, University of California, Ber-

keley, studying computer architecture and operat-

ing systems for warehouse-scale computers.

He has a BS in computer engineering from the

University of California Santa Cruz, and an MS in

computer science from the University of California,

Berkeley. He is a member of the Association for

Computing Machinery (ACM). Contact him at

nathanp@berkeley.edu.

Emmanuel Amaro is currently a PhD student in

computer science at the University of California,

Berkeley. His research interests include systems

and computer architecture with a focus in com-

puter disaggregation. Contact him at amaro@ber-

keley.edu.

Colin Schmidt is currently a PhD student at the

University of California, Berkeley, where he works on

Top Picks

64 IEEE Micro

https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.acm.org/10.1145/3289602.3293894
https://doi.acm.org/10.1145/3289602.3293894
biancolin@berkeley.edu.

architecting, implementing, and building software for

vector accelerators. He has a BS in electrical and

computer engineering and computer science from

Cornell University. He is a student member of

the Association for Computing Machinery (ACM).

Contact him at colins@berkeley.edu.

Aditya Chopra is currently a software engineer at

Google, where he works on the Dynamic Search

Ads team. He has an MS from the University of Cali-

fornia, Berkeley, where his primary research interest

is in low latency serving systems. Contact him at

adichopra@google.com.

Qijing Huang is currently a PhD student in the

Department of Computer Sciences, University of

California, Berkeley. Her current research interests

focus on hardware accelerators, high-level synthesis,

and machine learning for hardware design. She has

a BS from the University of Toronto. Contact her at

qijing.huang@berkeley.edu.

Kyle Kovacs is currently a Master’s student in elec-

trical engineering and computer sciences at the Univer-

sity of California Berkeley, where he completed his

undergraduate degree as well. His academic interests

include computer architecture and embedded systems.

Contact him at kylekovacs@berkeley.edu.

Borivoje Nikoli�c is the National Semiconductor

Distinguished Professor of Engineering at the Univer-

sity of California, Berkeley. He has a PhD in electrical

and computer engineering from the University of Cali-

fornia, Davis. He is a Fellow of the IEEE. Contact him

at bora@eecs.berkeley.edu.

Randy Howard Katz is currently a United Micro-

electronics Corporation Distinguished Professor in Elec-

trical Engineering and Computer Science at the

University of California, Berkeley. He has published more

than 300 refereed technical papers, book chapters, and

books. He has supervised 59MS theses and 48 PhD dis-

sertations. He has received 16 best paper awards,

including the triple “test of time” RAID paper and one

paper selected for a 50 year retrospective on IEEE Com-

munications publications), and three best presentation

awards. In the late 1980s, with colleagues at Berkeley,

he developed Redundant Arrays of Inexpensive Disks

(RAID), a $15 billion per year industry sector. His current

research interests include data analytics, computational

mobility, and cloud memory systems. He has an under-

graduate degree from Cornell University and an MS and

a PhD from the University of California, Berkeley. He

joined the Berkeley faculty in 1983. He is a Fellow of the

Association for Computing Machinery (ACM), the IEEE,

and the American Association for the Advancement of

Science, and a member of the National Academy of

Engineering and the American Academy of Arts and

Sciences. Contact him at randykatz@berkeley.edu.

Jonathan Bachrach is currently an adjunct assis-

tant professor in the Department of Electrical

Engineering and Computer Sciences at the Univer-

sity of California, Berkeley. He has a PhD in computer

science from the University of Massachusetts,

Amherst. Contact him at jrb@berkeley.edu.

Krste Asanovi�c is currently a professor in the

Department of Electrical Engineering and Computer Sci-

ences at the University of California, Berkeley. He has a

PhD in computer science from the University of Califor-

nia, Berkeley. He is a Fellow of the IEEE and the Associ-

ation for Computing Machinery (ACM). Contact him

at krste@berkeley.edu.

May/June 2019 65

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

