2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

FireSim: FPGA-Accelerated Cycle-Exact Scale-Out
System Simulation in the Public Cloud

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,
Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang,
Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, Krste Asanovié

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{sagark, zhemao, dgkim, biancolin, alonamid, dayeol, nathanp, amaro, colins, adichopra,
qijing.huang, kylekovacs, bora, randy, jrb, krste} @eecs.berkeley.edu

Abstract—We present FireSim, an open-source simulation
platform that enables cycle-exact microarchitectural simulation
of large scale-out clusters by combining FPGA-accelerated
simulation of silicon-proven RTL designs with a scalable,
distributed network simulation. Unlike prior FPGA-accelerated
simulation tools, FireSim runs on Amazon EC2 F1, a pub-
lic cloud FPGA platform, which greatly improves usability,
provides elasticity, and lowers the cost of large-scale FPGA-
based experiments. We describe the design and implementation
of FireSim and show how it can provide sufficient perfor-
mance to run modern applications at scale, to enable true
hardware-software co-design. As an example, we demonstrate
automatically generating and deploying a target cluster of
1,024 3.2 GHz quad-core server nodes, each with 16 GB
of DRAM, interconnected by a 200 Gbit/s network with 2
microsecond latency, which simulates at a 3.4 MHz processor
clock rate (less than 1,000x slowdown over real-time). In
aggregate, this FireSim instantiation simulates 4,096 cores and
16 TB of memory, runs ~14 billion instructions per second,
and harnesses 12.8 million dollars worth of FPGAs—at a total
cost of only "$100 per simulation hour to the user. We present
several examples to show how FireSim can be used to explore
various research directions in warehouse-scale machine design,
including modeling networks with high-bandwidth and low-
latency, integrating arbitrary RTL designs for a variety of
commodity and specialized datacenter nodes, and modeling a
variety of datacenter organizations, as well as reusing the scale-
out FireSim infrastructure to enable fast, massively parallel
cycle-exact single-node microarchitectural experimentation.

Keywords-Data centers; Computer simulation; Field pro-
grammable gate arrays; Computer networks; Distributed com-
puting; Performance analysis; Scalability; Computer architec-
ture

I. INTRODUCTION

The demand for ever more powerful warehouse-scale
computers (WSCs) continues to grow, to support new
compute-intensive applications deployed on billions of edge
devices as well as conventional computing workloads mi-
grating to the cloud. While the first few generations of
WSCs were built with standard servers, hardware trends are
pushing datacenter architects towards building warehouse-
scale machines that are increasingly specialized and tightly
integrated [1]-[3].

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/1SCA.2018.00014

29

The end of general-purpose processor performance scaling
has pushed cloud providers towards increased specialization,
through custom silicon (e.g. Google’s TPU [4]), FPGAs
(e.g. Microsoft’s Brainwave FPGA-based deep learning serv-
ing platform [5]), or GPUs (e.g. Amazon’s G3 instances).
Datacenter network performance has continued to scale,
in stark contrast to the stagnation of individual server
performance. Datacenter operators are currently deploying
Ethernet networks with 100s of Gbit/s of bandwidth and
latencies below 10s of microseconds. On the horizon is
the potential for silicon photonic networks to push Terabit-
per-second bandwidths straight to server processor dies [6].
New memory technologies, like 3D XPoint and HBM, also
have the potential to fill interesting gaps in the datacenter
memory hierarchy, but also further deepen and complicate
the memory hierarchy, requiring detailed evaluation at scale.
A large number of academic and industry groups have also
pushed towards disaggregated datacenter architectures that
combine all of these trends by splitting resources, including
CPUs, high-performance storage, and specialized compute
across a high-bandwidth, low-latency datacenter fabric [3],
[7]-[13]. Following these hardware trends and the expec-
tations of modern web-scale service users, application and
systems framework developers are also beginning to expect
the ability to deploy fine-grained tasks, where task runtime
and latency expectations are measured in microseconds [14].

These trends push the boundaries of hardware-software
co-design at-scale. Architects can no longer simply sim-
ulate individual nodes and leave the issues of scale to
post-silicon measurement. Additionally, the introduction of
custom silicon in the cloud means that architects must
model emerging hardware, not only well-understood proces-
sor microarchitectures. Hardware-software co-design studies
targeting next-generation WSCs are hampered by a lack of
a scalable and performant simulation environment. Using
microarchitectural software simulators modified to scale
out [15], [16] is fundamentally bottlenecked by the low
simulation speeds (5-100KIPS) of the underlying single-
server software simulator. Fast custom-built simulation hard-

IEEE
(@ computer
socl

ety

ware has been proposed [17], but is difficult to modify and
expensive ($100k+) to acquire, which limits access by most
academic and industrial research teams.

In this work, we present FireSim!-2, an open-source,
cycle-exact, FPGA-accelerated simulation framework that
can simulate large clusters, including high-bandwidth, low-
latency networks, on a public-cloud host platform. Individual
nodes in a FireSim simulation are automatically derived
from synthesizable RTL and run realistic software stacks,
including booting Linux, at 10s to 100s of MHz. High-
performance C++ switch models coordinate simulation glob-
ally and provide clean abstractions that hide the host system
transport to allow users to define and experiment with their
own switching paradigms and link-layer protocols. FireSim
also automates the construction of a scale-out simulation—
users define the network topology and number and types of
server blades in the system being simulated, and FireSim
builds and deploys high-performance simulations on Ama-
zon EC2 FI instances. Users can then treat the simulated
nodes as if they were part of a real cluste—simulated
datacenter nodes are visible on the network and can be ac-
cessed via SSH to run software while collecting performance
data that is cycle-exact. Thus, a FireSim user is isolated
from the complications of running FPGA-accelerated sim-
ulations. They write RTL (which can later be synthesized
with CAD tools and possibly taped out) to customize their
datacenter blades, C++ code to customize switch designs,
and specify the topology and link characteristics of their
network simulation to the simulation manager, which then
builds and deploys a simulation. Only RTL changes require
re-running FPGA synthesis—network latency, bandwidth,
network topology, and blade selection can all be configured
at runtime.

Section II describes recent hardware trends that allow us
to build a fast, usable, and cost-effective hardware simulation
environment. Section III describes the FireSim simulation
environment, including the target designs FireSim is capable
of simulating, and our high-performance network simula-
tion infrastructure. Section IV validates data collected by
software in FireSim simulations against parameters set in
the FireSim configuration, as well as reproducing scale-
out system phenomena from recent literature. Section V
discusses simulation performance and scale, including a
1024-node simulation. Section VI describes some early work
in warehouse-scale hardware-software co-design that uses
the FireSim simulation platform and discusses preliminary
results. Section VII discusses prior work in the area of scale-
out system simulation and contrasts it with FireSim. Finally,
Section VIII outlines ongoing work to improve FireSim
performance and features.

Uhttps://fires.im
Zhttps://github.com/firesim

30

II. FPGAs IN THE PuBLIC CLOUD

Architects experience many challenges when building
and using FPGA-accelerated simulation platforms. FPGA
platforms are unwieldy, especially when compared to soft-
ware simulators that run on commodity compute platforms.
Traditional FPGA platforms are constrained by high prices,
individual platform quirks that make reproducibility difficult,
the need to provision for maximum utilization at time of
initial purchase, and long build times, where parallelism is
limited by the number of build licenses and build servers
available. Even when FPGA pricing is insignificant to a
project, building a custom rack of large FPGAs requires
significant systems management and operations experience
and makes it extremely difficult to share and reproduce
research prototypes.

But recently, many cloud providers have begun integrating
FPGAs into their cloud services, including Amazon [18],
Microsoft [19], [20], Huawei [21], and Alibaba [22]. In
particular, Amazon makes FPGAs available as part of its
public cloud offering, allowing developers to directly de-
sign FPGA-based applications that run in the cloud. Using
an FPGA-enabled public cloud platform such as EC2 F1
addresses many of the traditional issues with FPGA-based
hardware simulation platforms and provides many of the
same benefits to computer architects that the cloud brought
to distributed systems builders. At the dawn of the cloud
era, systems researchers identified several changes to the
economics of obtaining compute: (1) the new illusion of
infinite computing resources, (2) the elimination of up-front
commitment towards hardware resources, and (3) the ability
to scale resources on-demand [23]. Given that prices of
large FPGAs are much higher than even the most expensive
general-purpose-compute servers, these advantages are mag-
nified for developers and users of FPGA-based simulation
platforms.

Since EC2 F1 is a relatively recent offering, we sum-
marize some of the key features of the service to explain
why it forms a natural platform on which to build the
scalable FireSim environment. Amazon’s EC2 F1 offering
provides two new EC2 instance types, £1.2xlarge and
f1.16é6xlarge, which consist of a powerful host instance
(8 or 64 vCPUs, 122 or 976 GB of DRAM, 10 or 25 Gbit/s
networking) attached to 1 or 8 Xilinx Virtex UltraScale+
FPGAs over PCle. Furthermore, each FPGA contains 64 GB
of DRAM onboard across 4 channels, making it an ideal
platform for prototyping servers. The ability to provision
any number of these instances on-demand and distribute
work to them provides scalability. Section III-B3 describes
FireSim’s ability to automate the mapping and deployment
of a simulation across a large number of £1.2xlarge and
f1.1l6xlarge instances.

Amazon also provides an “FPGA Developer AMI”, an
OS image that contains all of the tooling and licenses

Root Switch
YYvvvy

DRCRY

) |Node8

Node 57| cos

Figure 1.

Target view of the 64-node topology simulated in Figure 2.

necessary to produce FPGA images for F1 instances pre-
installed. As with FPGAs themselves, users can now scale
to an essentially unlimited number of FPGA synthesis/P&R
machines, making it possible to parallelize builds for design-
space exploration and for constructing heterogeneous cluster
simulations. Section III-B3 describes the FireSim infrastruc-
ture that can automatically distribute FPGA image builds
based on a set of supplied node configurations.

In addition to F1 instances, FireSim also uses
m4.1l6xlarge instances, which are “standard” EC2 in-
stances that support high-performance (25 Gbit/s) network-
ing. FireSim uses these instances to run aggregation and
root switch models. All together, by taking advantage of
the scalability of a cloud FPGA platform, we demonstrate
the ability to automatically generate, deploy, and simulate a
cluster of 1024 quad-core server nodes (for a total of 4096
cores) interconnected by a 200 Gbit/s network with 2 us
latency at 3.4 MHz. In aggregate, this simulation runs ~14
billion instructions per second and harnesses 12.8 million
dollars worth of FPGAs, at a total cost of only $100 per
simulation hour to the user with no upfront capital expendi-
ture. Section V details this example FireSim instantiation.

III. FIRESIM

FireSim models a target system containing a collection
of server blades connected by some form of network. The
target server blades are modeled using FAME-1 models [24]
automatically derived from the RTL of the server SoCs and
mapped onto FPGA instances, while the target network is
modeled with high-performance, cycle-by-cycle C++ switch
models running on host server instances. These two target
components are interconnected by a high-performance sim-
ulation token transport that models target link characteristics
and abstracts away host platform details, such as PCle
communication and host-to-host Ethernet communication.
Figures 1 and 2 show the target topology and target-to-
host mapping respectively for a 64-node simulation with 8
top-of-rack (ToR) switches and one root switch, which we
use as an example throughout this section.

A. Server Blade Simulation

1) Target Server Design: FireSim compute servers are
derived from the Rocket Chip SoC generator [26], which
is an SoC generation library written in Chisel [27]. Rocket

31

f1.16xlarge x8
m4.16xlarge CPU FPGA x8 []
X8 FAME 1 RocketChip I
. : NIC n

Simulation Simulation Tiles x4

Controllers [|,_| || endpoint 5
el 1 3
< s
= et Other g
2 [I[I[][r*| Simulation a
:n_, Ll Endpoints
O Lt
2 |4 ToR Switch

la—t> 1
FPGA DRAM
[

Figure 2. Example mapping of a 64-node simulation to EC2 F1 in FireSim.

Table 1
SERVER BLADE CONFIGURATION.

Blade Component RTL or Model

1 to 4 RISC-V Rocket Cores @ 3.2 GHz RTL

Optional RoCC Accel. (Table II) RTL

16KiB LII$, 16KiB L1DS$, 256KiB L2$ | RTL

16 GiB DDR3 FPGA Timing Model
200 Gbit/s Ethernet NIC RTL

Disk Software Model

Chip can produce Verilog RTL for a complete processor sys-
tem, including the RISC-V Rocket CPU, L1 and L2 caches,
custom accelerators (Table II), and I/O peripherals. Table 1
shows the Rocket Chip configurations we use throughout this
work. When we refer to a particular frequency f for Rocket
Chip, for example 3.2 GHz in Table I, this implies that all
models that require a notion of target time in the simulation
(e.g., the network) assume that 1 cycle is equivalent to
1/f seconds. The “FAME-1 Rocket Chip” box in Figure 2
provides a sample block diagram of a Rocket Chip server
node.

2) Target Server Network Interface Controller: To build
complete server nodes, we add two new peripherals to
the Rocket Chip SoC. The first is a network interface
controller (NIC) written in Chisel that exposes a top-level
network interface on the SoC. The design of the NIC is
shown in Figure 3. The NIC sends and receives Ethernet
packets to/from the network switch. Recent papers have
called for CPU and NIC to be integrated on the same die
in order to decrease communication latency [28]. Our NIC
implements this approach and connects directly to the on-
chip network of the Rocket Chip SoC through the TileLink2
interconnect [29]. This allows the NIC to directly read/write
data in/out of the shared L2 on the server SoC (Figure 2).

Table 1T
EXAMPLE ACCELERATORS FOR CUSTOM BLADES.

Accelerator

Page Fault Accel.
Hwacha [25]
HLS-Generated

Purpose

Remote memory fast-path (Section VI)
Vector-accelerated compute (Section VIII)
Rapid custom scale-out accels. (Section VIII)

Send Path

Reservation
Buffer

Receive Path

Network Packet |} |
Buffer

Tap

CPU | Tap Out=
MMio § Finterrupts

Controller
eﬁW

u| sJomIBN

Network Out

Figure 3.

Network Interface Controller (NIC) design.

The NIC is split into three main blocks: the controller, the
send path, and the receive path (Figure 3). The controller in
the NIC is responsible for communicating with the CPU.
It holds four queues: send request queue, receive request
queue, send completion queue, and receive completion
queue. The queues are exposed to the processor as memory-
mapped IO registers. To send a packet out through the NIC,
the CPU writes the memory address and length of the packet
to the send request queue. To receive a packet from the
NIC, the CPU writes the address of the receive buffer to the
receive request queue. When the send/receive paths finish
processing a request, they add an entry to their respective
completion queues. The NIC also has an interrupt line to the
CPU, which it asserts when a completion queue is occupied.
The interrupt handler then reads the completion entries off
of the queue, clearing the interrupt.

The send path in the NIC begins with the reader module,
which takes a send request from the controller and issues
read requests for the packet data from memory. Responses
from memory are forwarded to the next stage, the reservation
buffer. The reader sends a completion signal to the controller
once all the reads for the packet have been issued.

The reservation-buffer module stores data read from mem-
ory while it waits to be transmitted through the network
interface. Responses from the memory bus can arrive out-
of-order, so the reservation buffer also performs some re-
ordering so that the data is sent to the next stage in-order.

After the reservation buffer comes the aligner, which
allows the send path to handle unaligned packets. The
interface to the memory system is 64 bits wide, so the reader
can only read data at an eight-byte alignment. If the starting
address or ending address of the packet is not a multiple
of eight, some extra data before or after the packet will be
read. The aligner shifts data coming from the buffer so that
the extra data is omitted and the first byte of the packet will
be the first byte delivered to the destination.

The final module in the send path is the rate limiter, which
allows NIC bandwidth to be limited at runtime using a token-
bucket algorithm. Essentially, the limiter holds a counter
that is decremented every time a network flit is sent and
incremented by k& every p cycles. Flits can be forwarded
from input to output so long as the count is greater than zero.
This makes the effective bandwidth % times the unlimited
rate. The values k£ and p can be set at runtime, allowing
simulation of different bandwidths without resynthesizing
the RTL. Unlike external throttling of requests, this internal

32

throttling appropriately backpressures the NIC, so it behaves
as if it actually operated at the set bandwidth.

The receive path begins at the network input with a packet
buffer. Since we cannot back-pressure the Ethernet network,
the buffer must drop packets when there is insufficient space.
Packets are only dropped at full-packet granularity so that
the operating system never sees incomplete packets.

The writer module takes packet data from the buffer
and writes it to memory at the addresses provided by the
controller. The writer sends a completion to the controller
only after all writes for the packet have retired.

To interface between user-space software and the NIC, we
wrote a custom Linux driver to allow any Linux-compatible
networking software to run on FireSim.

The top-level interface of the NIC connects to the outside
world through a FAME-1 decoupled interface—each cycle,
the NIC must receive a token and produce a token for the
simulation to advance in target time. Section III-B details
cycle-accurate packet transport outside of the NIC.

3) Target Server Block Device Controller: We also add
a block device controller to the server blades simulated in
FireSim to allow booting of custom Linux distributions with
large root filesystems. The block device controller contains
a frontend module that interfaces with the CPU and one or
more trackers that move data between memory and the block
device. The frontend exposes Memory-Mapped /O (MMIO)
registers to the CPU, through which it can set the fields
needed for a block device request. To start a block device
transfer, the CPU reads from the allocation register, which
sends a request to one of the trackers and returns the ID of
the tracker. When the transfer is complete, the tracker sends
a completion to the frontend, which records the ID of the
tracker in the completion queue and sends an interrupt to the
CPU. The CPU then reads from the completion queue and
matches the ID with the one it received during allocation.
The block device is organized into 512-byte sectors, so the
controller can only transfer data in multiples of 512 bytes.
The data does not need to be aligned at a 512-byte boundary
in memory, but it does need to be aligned on the block
device.

4) Cycle-Exact Server Simulations from RTL: We use the
FAME-1 [24] transforms provided by the MIDAS/Strober
frameworks [30], [31] to translate the server designs written
in Chisel into RTL with decoupled I/O interfaces for use in
simulation. Each target cycle, the transformed RTL on the
FPGA expects a token on each input interface to supply input
data for that target cycle and produces a token on each output
interface to feed to the rest of the simulated environment.
If any input of the SoC does not have an input token for
that target cycle, simulation stalls until a token arrives.
This allows for timing-accurate modeling of I/O attached
to custom RTL on the FPGA. To provide a cycle-accurate
DRAM model for our target servers, we use an existing
synthesizable DRAM timing model provided with MIDAS,

attached directly to each host FPGA’s on-board DRAM,
with parameters that model DDR3. Other I/O interfaces
(UART, Block Device, NIC) communicate with a software
driver (“simulation controller” in Figure 2) on the host
CPU core, which implements both timing and functional
request handling (e.g. fetching disk blocks). Since in this
work we are primarily interested in scaling to large clusters
and network modeling, we focus on the implementation
of the network token-transport mechanism used to globally
coordinate simulation target time between the FAME-1-
transformed server nodes.

5) Improving Scalability and Utilization: In addition to
the previously described configuration, FireSim includes
an additional “supernode” configuration, which simulates
multiple complete target designs on each FPGA to provide
improved utilization and scalability.

The basic target design described above utilizes only
32.6% of the FPGA LUT resources and one of the four
memory channels. Only 14.4% of this utilization was for
our custom server-blade RTL. As a result, the supernode
configuration packs four simulated nodes on each FPGA,
increasing FPGA LUT utilization for server blades to ap-
proximately 57.7% of the FPGA logic resources, and total
FPGA LUT utilization to 76%. This optimization reduces the
cost of simulating large clusters, at the cost of multiplexing
network token transfer for four nodes over a single PCle
link. Section V-C describes how supernodes support the
simulation of a large cluster with 1024 nodes.

This type of scalability is particularly important when
attempting to identify datacenter-level phenomena, and re-
duces the dependency on the cloud-provider’s instantaneous
FPGA instance capacity. Furthermore, this capability allows
for the simulation of smaller target network topologies, such
as connecting a ToR switch to 32 simulated nodes, without
an expensive host-Ethernet crossing for token transport.

B. Network Simulation

1) Target Switch Modeling: Switches in the target de-
sign in FireSim are modeled in software using a high-
performance C++ switching model that processes network
flits cycle-by-cycle. The switch models have a parametriz-
able number of ports, each of which interact with either a
port on another switch or a simulated server NIC on the
FPGA. Port bandwidth, link latency, amount of buffering,
and switching latency are all parameterized and runtime-
configurable.

The simulated switches implement store-and-forward
switching of Ethernet frames. At ingress into the switch,
individual simulation tokens that contain valid data are
buffered into full packets, timestamped based on the arrival
cycle of their last token, and placed into input packet queues.
This step is done in parallel using OpenMP threads, with
one thread per-port. The timestamps are also incremented
by a configurable minimum switching latency to model the

33

minimum port-to-port latency of datacenter switches. These
timestamps are later used to determine when a packet can
be released to an output buffer. A global switching step
then takes all input packets available during the switching
round, pushes them through a priority queue that sorts them
on timestamp, and then drains the priority queue into the
appropriate output port buffers based on a static MAC ad-
dress table (since datacenter topologies are relatively fixed).
In this step, packets are duplicated as necessary to handle
broadcasts. Finally, in-parallel and per-port, output ports
“release” packets to be sent on the link in simulation token
form, based on the switch’s notion of simulation time, the
packet timestamp, and the amount of available space in the
output token buffer. In essence, packets can be released
when their release timestamp is less than or equal to global
simulation time. Since the output token buffers are of a
fixed size during each iteration, congestion is automatically
modeled by packets not being able to be released due
to full output buffers. Dropping due to buffer sizing and
congestion is also modeled by placing an upper bound on
the allowable delay between a packet’s release timestamp
and the global time, after which a packet is dropped. The
switching algorithm described above and assumption of
Ethernet as the link-layer is not fundamental to FireSim—
a user can easily plug in their own switching algorithm or
their own link-layer protocol parsing code in C++ to model
new switch designs.

2) High-performance Token Transport: Unlike simulat-
ing “request-response” style channels (e.g. AXI channels)
in cycle-accurate simulation platforms, the decoupled na-
ture of datacenter networks introduces new challenges and
prevents many optimizations traditionally used to improve
simulation performance, especially when simulated nodes
are distributed as in FireSim. In this section, we describe
our network simulation and how we map links in simulation
to the EC2 F1 host platform.

From the target’s view, endpoints on the network (either
NICs or ports on switches) should communicate with one
another through a link of a particular latency and bandwidth.
On a simulated link, the fundamental unit of data transferred
is a token that represents one target cycle’s worth of data.
Each target cycle, every NIC expects one input token and
produces one output token in response. Each port on every
switch also behaves in the same way, expecting one input
token and generating one output token every cycle. For a
link with link latency of N cycles, N tokens are always “in-
flight” on the link at any given time. That is, if a particular
network endpoint issues a token at cycle M, the token arrives
at the other side of the link for consumption at cycle M + N.

Network tokens in FireSim consist of two components: the
target payload field and a “last” metadata field that indicates
to the transport that a particular token is the end of a packet,
without having to understand a particular link-layer protocol.
In the case of our Ethernet model, the target payload field

contains two fields: the actual data being transmitted by
the target design during that cycle and a valid signal to
indicate that the input data for this cycle is legitimate data
(as opposed to an empty token, which corresponds to a cycle
where the endpoint received nothing from the network).
To simulate the 200 Gbit/s links we use throughout this
paper, the width of the data field is set to 64 bits, since we
assume that our simulated processor frequency is 3.2 GHz.
In a distributed simulation as in FireSim, different host
nodes are decoupled and can be executing different target
cycles at the same time, but the exchange of these tokens
ensures that each server simulation computes each target
cycle deterministically, since all NICs and switch ports are
connected to the same network and do not advance unless
they have input tokens to consume.

In a datacenter topology, there are two types of links that
need to be modeled: links between a NIC and a switch port
and links between two switch ports on different switches.
Since we model switches in software and NICs (and servers)
on FPGAs, these two types of links map to two different
types of token transport. Transport between NICs and switch
models requires two hops: a token must first cross the PCle
interface to an individual node’s simulation driver, then be
sent to a local switch model through shared memory or a
remote switch model over a socket.

As discussed in prior work on distributed software-based
cluster simulation [16], batching the exchange of these
tokens improves host bandwidth utilization and hides the
data movement latency of the host platform—both PCle and
Ethernet in the case of EC2 F1. Tokens can be batched up to
the target’s link latency, without any compromise in cycle
accuracy. Given that the movement of network tokens is
the fundamental bottleneck of simulation performance in a
FireSim simulation, we always set our batch size to the target
link latency being modeled.

We utilize three types of physical transports to move
tokens. Communication between FPGAs and host CPUs on
EC2 F1 happens over PCle. For high-performance token
transport, we use the Amazon Elastic DMA (EDMA) in-
terface to move batches of tokens (one link latency’s worth)
between token queues on the FPGA and the simulation
controller on the host. Transport between the simulation
controller and a ToR switch or between two switches can
be done either through a shared memory port (to effectively
provide zero-copy transfer between endpoints) or a TCP
socket when endpoints are on separate nodes. Since we
are focused on simulating low-latency target networks, our
primary bottleneck in simulation is the host latency of these
transport interfaces. Since latency is the dominant factor, we
also do not employ any form of token compression. This
also means that simulation performance is stable (workload
independent), apart from the cost of the switching phase
inside a switch. We explore the trade-off between target-link
latency and simulation performance in Section V.

34

To provide a concrete example to tie together the physical
and logical layers in link modeling and token transport, let
us trace the progress of a packet moving between two servers
(labeled A and B) connected by a single ToR switch in sim-
ulation. For simplicity, we assume that the packet consists of
only one token, however this description naturally extends
to longer packets. We assume that links have a latency of [
cycles and that we batch token movement by always moving
[tokens at a time across host PCle/network links. We also
assume that the network is completely unloaded and that
switches have a minimum port-to-port latency of n cycles.
Within a server, cycle-accuracy is maintained by virtue of
directly running FAME-1-transformed RTL on an FPGA, so
we focus on the path between the top-level I/O of the two
server NICs that are communicating:

1. Suppose that all simulated components (the switch and
the two servers) begin at cycle ¢ = 0, with each input token
queue initialized with [tokens.

2. Each simulated component can independently advance
to cycle ¢ = [by consuming the input tokens. Suppose that
server A’s NIC has a valid packet to send at cycle t = m < [.

3. This packet is written into the output token buffer in
the NIC Simulation Endpoint (see Figure 2) on the FPGA
at index m. When server A has completely filled the buffer,
the buffer is copied first to the software simulation controller
over PCle and then to the ToR switch via shared memory.

4. In the meantime, since the switch was also initially
seeded with [tokens per port, its simulation time has also
advanced to cycle [, before it receives this buffer.

5. Now, when the switch “ticks” cycle-by-cycle through
the newly received buffer and reaches simulation time ¢ =
I 4+ m, it will “receive” the packet sent by server A.

6. Next, the switch will write the packet to an output
buffer after a minimum switching delay, n, at cycle ¢ =
I + m + n. For the sake of argument, assume m +n < [.
Then, this packet will be written to the next buffer sent out
by the switch.

7. In the meantime, server B will have received two rounds
of input buffers, so it will have advanced to cycle 2/ when
it receives the buffer containing the packet. Since the packet
is at index m + n in this buffer, it will arrive at the input of
the server’s NIC at cycle 2/ +m + n, or two times the link
latency, plus the switching latency, plus the time at which
server A sent the packet.

This decoupled simulation technique allows us to scale
easily to large clusters. Furthermore, simulations generally
map well onto our host platform, since we are in essence
simulating large target clusters on large host clusters. Unlike
software simulators, the power of our host CPUs can be
dedicated to fast switching, while FPGAs handle the com-
putationally expensive task of modeling the low-level details
of the processors and the rest of the s